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The unsteady inviscid two-dimensional flow field and the wave configurations which
result when a supersonic vehicle strikes a planar oblique shock wave were modelled and
analytically predicted using some approximations and simplifying assumptions. Based
on the two- and three-shock theories together with the geometric shock dynamics
theory, both regular (windward) and irregular (leeward) shock-on-shock (S-O-S)
interactions were investigated, and the transition criterion between them was suggested.
For the case of regular S-O-S interaction, the transmitted shock wave reflects over the
vehicle body surface either as a regular (RR) or a Mach reflection (MR) depending on
the inclination angle and the strength of the impingement shock wave. A pronounced
peak surface pressure jump was found to exist during the transition from RR to MR.
A RR%MR transition criterion when the flow ahead of the shock pattern is not
quiescent was proposed. Predictions based on the model developed here are superior
to those of approximate theories when compared to the available experimental data
and numerical simulations.

1. Introduction

The interest in better understanding the unsteady flow field that results when a
supersonic vehicle intercepts a planar oblique shock wave travelling in the opposite
direction was initiated in the early 1960s. The interaction of the oblique shock wave
with the vehicle bow shock wave was termed in the literature a shock-on-shock (S-O-S)
interaction. The study of S-O-S interaction today is of interest for both theoretical
and practical reasons.

Two examples of S-O-S interactions are shown schematically in figure 1. In figure
1(a), a supersonic aircraft (drawn for simplicity as a wedge) travels towards an
explosion-generated blast wave. In figure 1(b), two supersonic aircrafts fly in opposite
directions and pass near one another.

Attention was focused on the S-O-S interaction as part of the need to determine the
strong blast-induced transient pulse produced at the surface of the supersonic vehicle
because of the belief that the forces generated could be structurally damaging, and to
answer the question of whether such an encounter could induce high-frequency
disturbances capable of destroying the internal structure or appended equipment.

A brief well-written summary of the developments in the study of S-O-S interactions,
since one of the first theoretical works by Smyrl (1963), is given in Kutler, Sakell &
Aiello (1975), who numerically investigated the two-dimensional S-O-S interaction. In
a successive study, Kutler & Sakell (1976) presented a numerical investigation of the
three-dimensional S-O-S interaction.

The pre-interaction flow fields in an inertial (laboratory) frame of reference and in
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F 1. Examples of S-O-S problems: (a) an interception of a supersonic vehicle with a blast
wave; (b) an encounter between two supersonic vehicles travelling in opposite directions.
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F 2. Definition of the flow parameters and domains in (a) a laboratory frame of reference
and (b) a frame of reference attached to a travelling wedge.

wedge (i.e. supersonic vehicle)-fixed coordinates are shown in figures 2(a) and 2(b),
respectively. An incident (impingement) shock wave, whose intensity is M

s
, is seen to

propagate from left to right towards a quiescent flow region (0). The incident-shock-
induced flow region is (2) and its flow Mach number is ML

#
. In addition, a supersonic

wedge whose Mach number is M¢ is seen to propagate from right to left. The bow-
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F 3. Schematic illustration of the wave configuration and the flow field of a regular S-O-S
interaction and definition of the flow parameters and the flow domains. (a) Regular reflection on the
wedge surface ; (b) Mach reflection on the wedge surface.

shock-induced flow region is (1). (Note that in general the angle of attack of the wedge
is not necessarily zero and hence the lower and the upper bow shocks can have different
angles of incidence (i.e. strengths).) By superimposing, on the flow field shown in figure
2(a), a velocity equal and opposite to that of the supersonic wedge, the flow field shown
in figure 2(b) is obtained. In this case of wedge-fixed coordinates, the wedge is
stationary, the flow Mach number in region (1) is M¢ and the flow Mach number
behind the incident shock wave is M

#
. Its orientation relative to the horizontal

direction is ε.
The interaction of the incident and bow shock waves can lead, in general, to two

types of S-O-S interaction, namely regular and irregular. Schematic illustrations of
these two types of interaction, which are consistent with experimental observations and
numerical simulations, are shown in figures 3 and 4, respectively. Detailed descriptions
of the wave configurations and the associated flow fields are given in subsequent
sections. For the regular S-O-S interaction shown in figure 3, which usually occurs in
the windward side of a flying vehicle, the region of the flow field of most interest is at
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F 4. Schematic illustration of the wave configuration and the flow field of an irregular
S-O-S interaction and definition of the flow parameters and the flow domains.

the body in the vicinity of the transmitted shock wave. This shock wave can reflect
regularly (regular reflection) or irregularly (Mach reflection), depending on its strength
and orientation. Major interest is given to the incident shock angle that yields the
transition between regular and Mach reflection, for it is this encounter angle that
results in the largest surface pressure at the body. Regarding the irregular S-O-S
interaction, the aim of this study is to predict the trajectory angle of the intersection
point as well as the transition criterion between the regular and the irregular S-O-S
interactions.

Each of the existing theoretical approaches (e.g. Smyrl 1963; Blankenship 1964;
Miles 1965; Inger 1966; Hudgins & Friedman 1973), involves simplifying assumptions
about the S-O-S interaction flow field, for instance weak blast waves, thin or slender
vehicles, replacement of curved shock waves by straight ones, etc. For an experimental
investigation, it is extremely difficult to set up a given encounter. The numerical
simulations have the drawbacks of the high resolution of wave configurations and
considerable CPU time cost for the S-O-S interaction which contains complex wave
systems and a number of independent variables.

This study attempts to analytically formulate the S-O-S interaction for any set of
initial conditions without the simplifications used in the earlier theoretical approaches,
and to get a better understanding of the physical mechanism of the S-O-S interaction.
In addition, the S-O-S interactions provide the environment where two moving shock
waves can irregularly intersect, and the transmitted shock wave reflects both regularly
and irregularly over the surface in the flow ahead of itself. In the present study,
transition criteria for both regular}irregular S-O-S interaction and regular}Mach
reflection are proposed.

2. The present study

2.1. Analysis of the wa�e configuration and flow field

The regular S-O-S interaction can be subdivided into two types whose wave
configurations are shown in figure 3. In both wave configurations, the incident (i) and
bow (b) shock waves intersect at point A. As a result, the bow shock wave is refracted
and the incident shock wave is transmitted. The flow field around the interaction point
A is complemented by a slipstream which separates the flow fields behind the refracted
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F 5. Definition of the parameters across an oblique shock wave.

(r) and transmitted (t) shock waves (regions (4) and (3), respectively). Note also that
owing to the change in the flow conditions at the leading edge of the wedge a new bow
shock wave is formed. As mentioned earlier, the transmitted shock wave (t) can reflect
over the wedge surface either as a regular reflection (RR), as shown in figure 3(a), or
as a Mach reflection (MR), as shown in figure 3(b). The definition of the flow domains
and relevant parameters is also shown on figures 3(a) and 3(b).

The flow field around point K, where the reflected shock wave (RK of the RR shown
in figure 3a or TK of the MR shown in figure 3b) intersects the primary slipstream
emanating from point A, is complemented by a transmitted reflected shock wave, KQ,
an expansion fan and a secondary slipstream. The curved transmitted reflected shock
wave KQ interacts with the refracted shock wave (r) at point Q. The interaction results
in a new stronger curved shock wave, QC, complemented by a slipstream emanating
from point Q. The curved shock wave QC and the new bow shock wave interact and
smoothly merge at point C. The downstream disturbances can reach point B. The arc
BD shown in figures 3(a) and 3(b) is a sonic line. The part of the new bow shock wave,
OB, is straight, since it is not caught up by any disturbance.

The irregular S-O-S interaction results in the wave configuration shown in figure 4.
Unlike the regular S-O-S interaction wave configurations, here the incident and the
bow shock waves do not intersect. Instead, they become parts of the two triple points,
E and F, which are bridged by a common Mach stem (m) complemented by two
slipstreams emanating from them. The transmitted shock wave (t) is smoothly turned
to become perpendicular to the wedge surface. The refracted shock wave (r«) interacts
with the new bow shock wave (b«) to result a wave configuration similar to that shown
in figure 3 for the regular S-O-S interaction case.

The solution of the unsteady S-O-S interactions is based on the fact that the flow
field is self-similar with respect to time. This is because no characteristic length is
associated with the body and the incident shock wave is planar. Therefore, by applying
the appropriate self-similar transformation to the unsteady gasdynamic equations, the
unsteady problem can be made steady and be solved analytically.

2.2. General go�erning equations for an oblique shock wa�e

Consider figure 5 where an oblique shock wave is schematically shown. The flow states
ahead and behind it are (i) and ( j), respectively. The angle of incidence between the
oncoming flow, whose Mach number is M

i
, and the oblique shock wave is φ

j
. While

passing through the oblique shock wave the flow streamline is deflected by an angle of
θ
j
.



106 H. Li and G. Ben-Dor

The conservation equations relating states (i) and ( j) for a steady inviscid flow of a
perfect gas are (for details see Ben-Dor 1991)

conservation of mass

ρ
i
u
i
sinφ

j
¯ ρ

j
u
j
sin (φ

j
®θ

j
), (1a)

conservation of normal momentum

P
i
ρ

i
u#
i
sin#φ

j
¯P

j
ρ

j
u#
j
sin# (φ

j
®θ

j
), (1b)

conservation of tangential momentum

ρ
i
tanφ

j
¯ ρ

j
tan (φ

j
®θ

j
), (1c)

conservation of energy
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j
), (1d )

where u is the flow velocity, P is the pressure, ρ is the density and γ is the specific heat
capacities ratio. The above equations can be combined to read
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where M¯ u}a is the flow Mach number and a is the local speed of sound.
In the following, analytical models for solving the wave configurations associated

with both regular and irregular S-O-S interactions are developed. The solution is
constructed by formulating the appropriate governing equations around points at
which the various discontinuities intersect and applying, whenever necessary,
appropriate matching conditions.

2.3. Analytical solution of a regular S-O-S interaction

2.3.1. Solution of the bow shock wa�e

The flow fields on both sides of the bow shock wave emanating from the leading edge
of the wedge (see figures 3a and 3b) are described by the following equations which are
simply obtained from (2a) to (2d ) :

θ
w

¯F(γ,M¢,β), M
"
¯G(γ,M¢,β), (3a, b)

P
"
¯P

!
H(γ,M¢,β), a

"
¯ a

!
W(γ,M¢,β), (3c, d )

where M¢ is the free-stream Mach number, β is the angle of incidence of the bow shock
wave as shown in figure 3(a), and θ

w
¯ δα, where δ is the half-wedge angle and α is

its angle of attack.
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2.3.2. Solution around point A (figure 3a or 3b)

The flow field around point A at which the incident (impingement) and the bow
(wedge) shock waves intersect is shown in figure 6, which, in fact, is a detailed
enlargement of the appropriate parts in figures 3(a) and 3(b). Since the frame of
reference is attached to point A, all the dynamic properties, which are frame-of-
reference dependent are appropriately marked.

The velocity of point A to which the frame of reference is attached is

V
A

¯
M

s
M¢ cosλ

cos (βλ)
a
!
, (4)

where M
s
is the impingement shock wave Mach number, λ is its angle of propagation

with respect to the horizontal direction (see figure 2). Note here that λ is an algebraic
quantity and is positive as shown in figure 3. In the frame of reference attached to point
A the flow parameters in region (0) can be expressed as

M
!
(A)¯ 90VA

a
!

1#M#¢®2
V
A

a
!

M¢ cosβ:"/#, (5)

η¯ arctan 0 V
A
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V
A
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!

1 , (6)

φ
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φ
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(A)¯ "

#
π®λ®η. (8)

By applying the oblique shock wave relations, one simply obtains

θ
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j
(A),φ

k
(A)], (9a–d )
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a
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3(a) and (b) point T of the Mach reflection shown in figure 3(b).

where j¯ 0 and k¯ 2 for the incident (impingement) shock wave (i), j¯ 0 and k¯ 1
for the original bow (wedge) shock wave (b), j¯ 2 and k¯ 4 for the refracted
shock wave (r), j¯ 1 and k¯ 3 for the transmitted shock wave (t).

The matching conditions across the slipstream separating regions (3) and (4) are

θ
$
(A)®θ

"
(A)¯ θ

#
(A)®θ

%
(A), (13)

P
$
(A)¯P

%
(A). (14)

Equations (4)–(14) consist of 23 equations and the following 23 unknowns: V
A
, η,

φ
"
(A), φ

#
(A), φ

$
(A), φ

%
(A), θ

"
(A), θ

#
(A), θ

$
(A), θ

%
(A), M

!
(A), M

"
(A), M

#
(A), M

$
(A),

M
%
(A), P

"
(A), P

#
(A), P

$
(A), P

%
(A), a

"
(A), a

#
(A), a

$
(A) and a

%
(A). Consequently, the set

is complete and solvable provided M¢, λ, a
!
and P

!
are known, as indeed is the case.

As mentioned in the Introduction the transmitted shock wave (t) can reflect at
the wedge surface either as a regular reflection (RR) or as a Mach reflection (MR).
Detailed descriptions of the flow fields associated with these regular and Mach
reflections are shown in figures 7(a) and 7(b), respectively. The frame of reference is
attached to the reflection point, R, when solving the RR and to the triple point, T,
when solving the MR.
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2.3.3. Solution of the case with a regular reflection

Since the frame of reference is attached to the reflection point R, the flow properties
in region (1) which have already been solved in a frame of reference attached to point
A must be first transformed with the aid of the following relations:

φ
$
(R)¯φ

$
(A)φ

"
(A)®θ

"
(A)β®θ

w
, (15)

M
"
(R)¯M

"
(A) sinφ

$
(A)}(sinφ

$
(R)), (16)

P
"
(R)¯P

"
(A), (17)

a
"
(R)¯ a

"
(A). (18)

The oblique shock relations result in

θ
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j
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M
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j
(R),φ

k
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P
k
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j
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k
(R)], (21a, b)

a
k
(R)¯ a

j
(R)W [γ,M

j
(R),φ

k
(R)], (22a, b)

where k¯ 3 and j¯ 1 for the shock wave AR, k¯ 5 and j¯ 3 for the shock wave KR.
The boundary condition of the regular reflection implies that

θ
$
(R)®θ

&
(R)¯ 0. (23)

The set of equations (19)–(23) consists of nine equations and nine unknowns, namely
θ
$
(R), θ

&
(R), M

$
(R), M

&
(R), P

$
(R), P

&
(R), a

$
(R), a

&
(R), and φ

&
(R). Consequently, the set

is complete and solvable in principle.

2.3.4. Solution of the case with a Mach reflection

Since the frame of reference is attached to the triple point T, the flow properties in
region (1) which have already been solved in a frame of reference attached to point A
must first be transformed. The velocity of the triple point T in the laboratory frame of
reference is
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, (24a)

where, χ
T
, the triple-point trajectory angle, is the angle between the wedge surface and

the trajectory of the triple point T.
The angle φ

$
(T ) can be obtained from
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"
a
"

1 . (24c)

In the above equations, M
"
and a

"
are the Mach number and the speed of sound of the

flow in region (1) in the laboratory frame of reference, respectively. Note that they have
already been calculated by (3b) and (3d ).

The above-mentioned transformation is performed with the aid of the following
relations:
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(A) sinφ

$
(A)}(sinφ
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(T )), (25)
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The oblique shock wave relations result in
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where k¯ 3 and j¯ 1 for the shock wave AT, k¯ 5 and j¯ 3 for the shock wave KT,
k¯ 6 and j¯ 1 for the shock wave TG (i.e. the Mach stem of the MR).

The matching conditions across the slipstream are

P
&
(T )¯P

'
(T ), (32)

θ
$
(T )®θ

&
(T )¯ θ

'
(T ). (33)

Assuming that the Mach stem, TG, is straight and perpendicular to the wedge surface
results in

φ
'
(T )¯ "

#
π®ζ. (34)

Equations (25)–(34) consist of 21 equations and 21 unknowns. The unknowns are
V
T
, ζ, θ
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T
. Consequently, the set of

equations is complete and solvable in principle.

2.3.5. Solution around point K (figure 3a or 3b)

As shown in figures 3(a) and 3(b), the reflected shock wave of either the RR or the
MR intersects the slipstream emanating from point A at point K. The resulting wave
configuration is shown in figure 8. The velocity of point A in a frame of reference
attached to point K, V

A
(K ), can be obtained from the following relations:

rV
A
(K )r¯ rV

A
®V

K
r¯

OA®OK

∆t
¯

AK

∆t
, (35)

whereV
A

and V
K

are the velocity vectors of points A and K in a laboratory frame of
reference, and ∆t¯OA }V

A
, is the time elapsed since the S-O-S interaction started.
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F 9. Geometrical relations between points O, A, R, K and Q of figure 3(a).

Applying the sine-law for the triangle AOK (figure 9) and combining with equation
(34) results in
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Since the solution of the flow field around point K is done in a frame of reference
attached to it, the flow properties in regions (3) and (4), which have already been solved
in previous stages, must be transformed appropriately. This transformation is
performed with the aid of the following expressions:
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φ
&
(K ) can be obtained using geometrical relations of the triangle ARK (figure 3a) or

of the triangle ATK (figure 3b). In the following only the equations associated with the
RR (figure 3a) are derived, since those associated with the MR (figure 3b) are similar.
An inspection of the triangle ARK (see figure 9) together with figures 6 and 7 implies
that
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The trajectory angle of point K, χ
K
, can be obtained by applying the sine law to three

triangles, OAR, PKR and AKR, as shown in figure 9, which results in
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sin [χ
K
φ

&
(R)®θ

&
(R)]

¯
sin (β®θ

w
) sin [φ
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(A)®θ

$
(A)]

sin [φ
&
(R)φ

$
(R)θ

$
(A)®φ

$
(A)®θ

$
(R)]

. (39)

Now we are at the stage of solving the flow field around point K which, as shown
in figure 8, consists of two shock waves, KR (or KT) and KQ, two slipstreams, KA and
KN, and one centred expansion fan. The flow field across the two oblique shock waves
can be obtained with the aid of the general oblique shock relation

θ
i
(K )¯F [γ,M

j
(K ),φ

i
(K )], (40a, b)

M
i
(K )¯G [γ,M

j
(K ),φ

i
(K )], (41a, b)

P
i
(K )¯P

j
(K )H [γ,M

j
(K ),φ

i
(K )], (42a, b)

a
i
(K )¯ a

j
(K )W [γ,M

j
(K ),φ

i
(K )], (43a, b)

where i¯ 5 and j¯ 3 for the shock wave KR, i¯ 8 and j¯ 4 for the shock wave KQ.
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The relations across the centred expansion fan which connects regions (5) and (7) are

ν[M
(
(K )]¯ ν[M

&
(K )]θ

(
(K ), (44)

P
(
(K )¯P
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(K ) 91"
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γ/(γ−")

, (45)

a
(
(K )¯ a

&
(K ) 91"

#
(γ®1)M#

&
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#
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(
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"/#

, (46)

where the Prandtl–Meyer function ν(M ) is defined as follows:

ν(M )¯ 0γ1

γ®11
"/#

arctan 9γ®1

γ1
(M #®1):"/#®arctan (M #®1)"/#.

The matching conditions across the slipstream, KN, are

P
(
(K )¯P

)
(K ), (47)

θ
&
(K )θ

(
(K )¯ θ

)
(K ). (48)

The set of equations (40)–(48) is complete and solvable since it consists of 13 equations
and 13 unknowns, namely θ

&
(K ), θ

(
(K ), θ

)
(K ), M

&
(K ), M

(
(K ), M

)
(K ), a

&
(K ), a

(
(K ),

a
)
(K ), P

&
(K ), P

(
(K ), P

)
(K ) and χ

K
.

2.3.6. Solution around point Q (figure 3a or 3b)

The velocity of point A in a frame of reference attached to point Q, i.e. V
A
(Q), can

be expressed as (see figures 9 and 10)

V
A
(Q)}AQ ¯V

A
}OA . (49)

Applying the sine law to triangle OAQ and combining with (49) yields

V
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. (50)

The flow Mach number in region (2) relative to point Q can be found from figure 10(a)
by applying the cosine law:
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a
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A
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Applying the sine law and rearranging results in

φ
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where a
#
(Q)¯ a

#
(A) and P

#
(Q)¯P

#
(A). The above equations are sufficient to obtain

M
#
(Q) and φ

#
(Q). By using the oblique shock relations one can get (see figure 10b)
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a
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j
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j
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k
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where k¯ 4 and j¯ 2 for the shock wave QA, k¯ 9 and j¯ 2 for the shock wave QC,
k¯ 8 and j¯ 4 for the shock wave QK.
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F 10. (a) The velocity vectors around point Q; (b) definition of the parameters around
point Q of figures 3(a) and 3(b).

The matching conditions across the slipstream are

P
)
(Q)¯P

*
(Q), (57)

θ
%
(Q)®θ

)
(Q)¯ θ

*
(Q). (58)

The set of equations (53) to (58) consists of 14 equations and 15 unknowns, that is
θ
%
(Q), θ

)
(Q), θ

*
(Q), M

%
(Q), M

)
(Q), M

*
(Q), P

%
(Q), P

)
(Q), P

*
(Q), a

%
(Q), a

)
(Q), a

*
(Q),

φ
)
(Q), φ

*
(Q) and χ

Q
. To complete this set of equations an additional equation is

required.
The curved shock wave KQ is disturbed by the expansion waves reflected from the

wedge surface. If one assumes that these expansion waves are simple waves then by
using the geometrical shock dynamics theory (see Han & Yin 1993) one can get

θ
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(Q)®θ
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(K )¯&Mk
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9 2

(M #®1)Λ(M ):
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dM, (59a)
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, (59c)
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F 11. Schematic illustration of the new bow shock wave and definition of parameters.

where θ
%s
(Q) and θ

%s
(K ) are the orientation angles of the curved shock KQ at points

Q and K, respectively. M
K

and M
Q

are the strengths of the curved shock wave KQ at
points K and Q, respectively, and Λ(M ) is a slowly varying function. Λ(M )¯ 0.5 for
MU 1 and Λ(M )¯ 0.4 for MU¢.

It is clearly evident from figure 10(b) that

M
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(Q)], (59d, e)
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Since (M
K
®M

Q
)}M

K
' 1, Λ(M ) can be regarded as a constant. Consequently,

equation (59a) can be rewritten as

M
Q

¯ cosh ²cosh−"(M
K
)(Λ}2)"/# [θ
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(K )®θ

%s
(Q)]´. (60)

Equation (60) completes the set of equations (53)–(58) which as noted earlier lacked
one equation compared to the number of its unknowns.

2.3.7. Solution of the new bow shock

The new bow shock results from the interaction of the incident (impingement)
shock-induced flow with the wedge. As shown in figure 2(b), the angle between the flow
direction and the horizontal axis, ε, can be expressed as

ε¯ arctan (M
#
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Similarly, the induced-flow Mach number in a laboratory frame of reference, M
#
, is
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Applying the oblique shock relations results in
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where as shown in figure 11, β« is the angle of incidence of the new bow shock. As
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shown in figure 3(a) the straight new bow shock interacts with the shock wave issuing
from point Q. The interaction results in a curved portion of bow shock, BQ.

Similar to the analysis of Li, Ben-Dor & Han (1994), two families of disturbances
propagate along the shock BQ. One starts at B and the other starts at Q. Let us assume
that these disturbances cannot cross each other and that they meet at point C. From
a shock dynamics point of view, the shock waves BC and QC are disturbed by simple
waves. By using the shock-expansion relations one can get
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where as shown in figure 11, θ
#s
(Q), θ

#s
(C ) and θ

#s
(B) are the shock orientations at

points Q, C and B, respectively, and M
Q
, M

C
and M

B
, are the strengths of the shock

waves at points Q, C and B, respectively. In addition,
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The locations of points B and D are
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The shape of the curved shock wave BCQ can be expressed as two second-order
polynomials which match at point C. Since the derivation is similar to that done by Li
et al. (1994), only the final results are given subsequently.

2.4. Analytical solution of an irregular S-O-S interaction

The irregular S-O-S interaction wave configuration is shown in figure 4. The incident
(impingement) shock interacts with the bow shock, which produces a Mach stem EF.
The points E and F can be regarded as two triple points.

2.4.1. Solution around points E and F

The velocity of point E in a laboratory frame of reference is

V
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¯
M

s
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E
θ

w
λ)

a
!
, (71)

where χ
E
, as shown in figure 4, is the trajectory angle of point E. Note that λ is negative

in figure 4.
In a frame of reference attached to point E (see figure 12) the flow parameters in

region (0) can be obtained using the following relations:
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F 12. Definition of the parameters around point E for the irregular S-O-S interaction
shown in figure 4.
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Applying the oblique shock wave relations to the shock waves shown in figure 12
results in
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where j¯ 0 and k¯ 2 for the incident (impingement) shock wave (i), j¯ 0 and k¯ 5
for the shock wave (m), j¯ 2 and k¯ 4 for the shock wave (r«).

The matching conditions across the slipstream are
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Equations (71)–(80) consist of 18 equations with 19 unknowns, i.e. V
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(E ), χ(E ) and ξ. Therefore, an additional equation is needed to complete this

set. Experimental photographs indicate that the Mach stem EF is short and only
slightly curved. Consequently the assumption that the Mach stem is straight seems to
be reasonable.

If the shock wave EF is assumed to be straight, the velocity of point F in a laboratory
frame of reference (see figure 4), V

F
, can be easily found by applying the sine law to the

triangle OEF, i.e.
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F 13. Definition of parameters around point F for the irregular S-O-S interaction
shown in figure 4.

The flow parameters in region (0) in a frame of reference attached to point F (see figure
13) can be obtained using the following expressions:
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Applying the oblique shock wave relations to the oblique shock waves shown in figure
13 results in
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where j¯ 0 and k¯ 1 for the bow shock wave (b), j¯ 0 and k¯ 5 for the shock wave
(m), j¯ 1 and k¯ 3 for the shock wave (t).

The matching conditions across the slipstream are
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Equations (81)–(88) consist of 19 equations with 18 unknowns, i.e. V
F
, θ

"
(F ), θ

$
(F ),

θ
&
(F ), M

!
(F ), M

"
(F ), M

$
(F ), M

&
(F ), P

"
(F ), P

$
(F ), P

&
(F ), a

"
(F ), a

$
(F ), a

&
(F ), φ

"
(F ),

φ
$
(F ), φ

&
(F ) and σ. By combining the two sets of equations (75)–(80) which has one

extra unknown and (81)–(88) which lacks one unknown, one obtains a new combined
set, which consists 37 equations with 37 unknowns. The solution of this set provides,
simultaneously, the solutions of the flow fields around points E and F.

2.4.2. Shapes of the new bow shock and the transmitted shock

The shape of the new bow shock can be obtained by using the method outlined
earlier for calculating the shape of the shock wave KQ (see figure 3b). Consequently,
in the following only the shape of the transmitted shock FH (see figure 4) is dealt with.
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If one assumes that only simple waves propagate along the transmitted shock, FH, and
cause it to curve, then the following relations which arise from the shock dynamics
theory are self-explanatory:
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where θ
F

and θ
H

are the shock wave orientation angles at points F and H, respectively,
and M

F
and M

H
are the strengths of the shock wave at points F and H, respectively.

Since the shock wave FH is perpendicular to the wedge surface at point H,
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Assuming that the shape of the shock wave FH can be expressed by a third-order
polynomial, e.g.
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where x
H

¯OH and y
H

¯ 0. The coordinates of point F (x
F
, y

F
) and the slope of the

curve at point F are

x
F

¯OF cos (β®θ
w
), y

F
¯OF sin (β®θ

w
), (95b, c)
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Consequently, the expression for the shape of the shock wave FH is
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The shape of the new bow shock can be solved in a way similar to that for a regular
S-O-S interaction, shown earlier.

3. Results and discussion

The model equations, derived in §2, were solved by . Since the equations
comprising each set did not have to be solved simultaneously, a step-by-step solution
procedure was applied. Using this procedure the entire set of equations could be
subdivided into smaller sets which sometimes even consisted of only one equation, e.g.
equation (4) is independent of the rest of the equations in the set of 23 equations given
by (4)–(14). In addition, the solution of some sets of equations require initial guesses
of the unknowns. It was found that the most sensitive ones were the angles while the
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F 14. Dependence of the transmitted shock wave angle, ω, on λ. Open and solid circles are
numerical results of Kutler et al. (1975) for two seats of parameters, respectively.

flow parameters (e.g. Mach number, pressure, density, etc.) were not too sensitive.
Whenever a solution converged to an aphysical solution the initial guesses for the
angles were changed and the solution process was repeated. In all the calculations, the
specific heat capacities ratio was γ¯ 1.4.

In order to check the accuracy of the model developed here, the predicted values of
the transmitted shock wave angle, ω (see figure 3a), ω¯φ

$
(A)φ

"
(A)®θ

"
(A)β®θ

w
,

which is considered to be essential for the subsequent analysis, were compared with
Kutler et al.’s (1975) numerical results. For the two cases shown in figure 14, the
agreement between the analytical and the numerical predictions is excellent. It should
be noted here that the ‘broadside’ shown in figure 14 is now defined as λ¯ "

#
π®β,

rather than λ¯ "

#
π®θ

w
as defined by Kutler et al. (1975), because when λ" "

#
π®β, the

impingement shock wave (i) cannot begin to interact with the bow shock wave (b) at
the leading edge of the wedge.

As mentioned earlier, the transmitted shock wave (t) reflects over the wedge surface
as either a regular reflection (RR) or a Mach reflection (MR). When its strength and
orientation are known, the RR%MR transition criterion can be obtained by
combining (19)–(23) with the following equation:
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which was derived from von Neumann’s (1943) detachment criterion. Note that in the
present case, the flow field ahead of the shock pattern is not at rest. This differs from
pseudosteady shock wave reflections in shock tubes where the flow ahead of the shock
wave is quiescent. The transition criterion for θ

w
¯ 11.2°, M¢ ¯ 5 and θ

w
¯ 30°,

M¢ ¯ 3.15 in the (λ
tr
,M

s
)-plane is shown in figure 15. Kutler et al. (1975) found numeri-

cally that for θ
w

¯ 11.2°, M¢ ¯ 5 and M
s
¯ 1.24, the RR%MR transition takes place

at λ
tr

¯ 21.67°, while the present predicted value is λ
tr

¯ 22.59°. For the second case,
θ
w

¯ 30°, M¢ ¯ 3.15, M
s
¯ 2 and λ¯ 0, Kutler et al. (1975) obtained a RR wave

configuration while Merritt & Aronson’s (1967) experiment and the present prediction
indicates a MR wave configuration, although the values of the transmitted shock angle,
ω, were very close, i.e. ω¯ 49³1° in the experiment, 50³1° in the numerical
calculation and 49.95° in the present analytical prediction. The disagreement between
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the numerical simulation and the experiment was explained by Kutler et al. (1975) as
a result of the shock wave}boundary interaction. This explanation is questionable since
as shown by Ben-Dor (1991), the viscosity only marginally influences the transition
angle. Note that the present predicted RR%MR transition for the above listed
conditions occurs at λ

tr
¯ 12.37°. Consequently, since the difference between λ¯ 0 and

λ
tr

¯ 12.37° is clearly not marginal, the difference in the overall phenomenon cannot
be attributed to the neglect of viscous effects.

The prediction of the triple-point trajectory angle, χ
T
, is essential for the study

of Mach reflection wave configurations. The dependence of χ
T

on λ is shown in
figure 16, which indicates that χ

T
decreases as λ increases. Note that the transition is

reached at a point where χ
T

is not equal to zero. This is consistent with the results for
pseudosteady shock wave reflections in quiescent gas.

It is interesting to compare the triple-point trajectory angle of a Mach reflection
between the cases in which the gas ahead of the wave configuration is quiescent and
non-quiescent (the present case), for an identical shock wave strength and incident
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angle. As shown in figure 17, χ
T

for a quiescent gas (dashed line) is larger than for a
non-quiescent gas (solid line). Similar results were obtained by Li & Ben-Dor (1995)
when their shock–shock relations were applied to a non-quiescent gas.

The maximum pressure on the wedge surface is reached behind point R (region (5))
for RR (see figure 3a) and immediately behind the Mach stem (region (6)) for MR (see
figure 3b). For a Mach reflection, Smyrl (1963) and Miles (1965) developed
approximate methods, based on the perturbation theory and the geometric shock
dynamics theory, respectively, to predict the wedge surface pressure behind the Mach
stem. Their models were limited to very small wedge angles, i.e. θ

w
' 1 rad. The

dependence of the predicted normalized maximum pressure, Γ¯ (P
'
®P

#
)}γP

#
θ
w
, on

M
s

is shown in figure 18. It was found that for θ
w

¯ 0.1 rad, M
s
& 3.5 and θ

w
¯

0.01 rad, M
s
& 2, the values predicted by the present model are located between

Smyrl’s (1963) and Miles’ (1965) results, who assumed θ
w

' 1 rad in their models.
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The dependence of the predicted maximum surface pressure P
max

}P
!
on λ for both

regular and Mach reflection wave configurations is shown in figure 19. For the RR
case, the present prediction agrees well with the numerical (Kutler et al. 1975), the
experimental (Ruetenik, Cole & Jones 1973) and the approximate theoretical (Miller,
Schindel & Ruetenik 1964) results. For the MR case, the numerical predictions are
smaller than the present analytical predictions. Since no experimental data are
available to the authors, it is not clear which of these two predictions is closer to the
actual values. Overall, the present analytical model is superior to the approximate
theory (dashed line) developed by Lagow & Murad (1975). It is clear that P

max
}P

!
jumps during the RR%MR transition. This is a well-known feature predicted by von
Neumann’s (1943) two- and three-shock theories. Its experimental confirmation is
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somewhat difficult because the peak pressure jump in an unsteady configuration may
be of extremely short duration. The existence of a pressure jump contradicts the so-
called mechanical equilibrium criterion for RR%MR transition (for details see Ben-
Dor 1991). This jump predicted by the present model is greater than that predicted by
the numerical simulation and smaller than that predicted by the approximate theory.

The relation between the original bow shock wave angle, β, and the new bow shock
wave angle, β«, in the (M¢,M

s
)-plane for a head-on S-O-S interaction (λ¯ 0) is shown

in figure 20. It is evident that β«"β for M¢ " 5.
The dependence of the position of the sonic front BD (see figure 3a) on λ, for θ

w
¯

11.2°, M¢ ¯ 5 and M
s
¯ 1.24, is shown in figure 21. One numerical datum of Kutler

et al. (1975) lies very close to the analytically predicted value.
The pressure distribution along the wedge surface is presented in figure 22. The wave

configuration, for the given set of parameters, is a regular reflection. It is clear that a
transient pressure pulse is introduced at the reflection point R, and that the maximum
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surface pressure is reached immediately behind it. Then the pressure remains constant,
until point I, where the leading expansion wave reaches the wedge surface (see figure
3a). Then, the pressure drops monotonically to the value at point J, where the rear
expansion wave reaches the wedge surface (see figure 3a). The location of points I and
J can be determined from the following equations:
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where µ

&
(K )¯ arcsin [1}M

&
(K )] and µ

(
(K )¯ arcsin [1}M

(
(K )].

The minimum surface pressure is obtained at the point at which the isobar line
emanating from point C connects, which is located between points J and D. The
accurate location of this minimum surface pressure point cannot be predicted by the
present model. Instead, it was approximately determined by using an arc, which was
assumed to have the same source centre as the sonic front, to connect it with point C.
From the leading edge to the sonic front, the pressure remains constant. Comparison
of Kutler’s et al.’s (1975) numerical data with the present predicted results indicated
that the agreement between them was, in general, very good except for the minimum
pressure value.

A comparison of the analytically predicted wave configuration and the appropriate
numerical simulation of Kutler et al. (1975) for λ¯ 22.8°, θ

w
¯ 11.2°, M¢ ¯ 5 and

M
s
¯ 1.24 is shown in figure 23. Good agreement is evident.

The above results and discussion are for the regular S-O-S interactions. Regarding
the irregular S-O-S interactions, one should first determine the conditions for their
existence, i.e. obtain the transition criterion between the regular and the irregular S-O-S
interactions. The necessary conditions for the existence of a regular S-O-S interaction
are M

$
(A)" 1 and M

%
(A)" 1, which means that point A is isolated from the

downstream disturbance. It can be easily shown that

M
%
(A)"M

$
(A) if M

s
!M

b
,

and M
$
(A)"M

%
(A) if M

s
"M

b
.
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(a) θ
w
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Here M
b
¯M¢ sinβ is the strength of the original bow shock wave (b). It is clear

that M
$
(A)¯M

%
(A) only when M

s
¯M

b
. Similar to the sonic RR%MR transition

criterion, it is hypothesized here that the transition criterion between regular and
irregular S-O-S interactions is M

%
(A)"M

$
(A)¯ 1 or M

$
(A)"M

%
(A)¯ 1. Further-

more, since the S-O-S interaction is associated with a wedge, the transmitted shock
wave (t) must reflect over the wedge surface. If it inclines forward, i.e. ω" "

#
π, the

reflection becomes impossible. Therefore, an additional necessary condition ω! "

#
π is

needed for a regular S-O-S interaction. Combining the above two requirements, the
transition criteria can be summarized as

I

II

M
%
(A)"M

$
(A)" 1, ω¯ "

#
π

M
%
(A)"M

$
(A)¯ 1, ω! "

#
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b
,

III

IV
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%
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#
π

M
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%
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#
π* for M

s
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b
.

The transition criteria in the (λ,M
s
)-plane for θ

w
¯ 11.2°, M¢ ¯ 5 and θ

w
¯ 20°,

M¢ ¯ 5, are shown in figures 24(a) and 24(b), respectively.
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The transition criterion in the (λ, θ
w
)-plane for M¢ ¯ 5 and M

s
¯ 1.2 is shown in

figure 25. It is important to note that irregular S-O-S interactions always occur for
negative values of λ. In other words, head-on S-O-S interactions, for which λ¯ 0,
cannot result in irregular S-O-S interactions. This finding contradicts Smyrl’s (1963)
hypotheses, who claimed that three different types of head-on S-O-S interactions are
possible for a slender body (θ

w
' 1 rad), i.e. non-intersection tangents (regular),

intersection tangents (regular), and single tangent (irregular). It should be mentioned
here that neither Merritt & Aronson (1965) nor Brown & Mullaney (1965) recorded
irregular S-O-S interaction cases when they conducted head-on S-O-S interaction
experiments with a slender wedge and a cone.

Finally, a predicted irregular S-O-S interaction wave configuration is shown in figure
26. As expected, the Mach stem (m) is short, and the refracted bow shock wave (r«) is
convex toward the wedge. This is due to the fact that a family of compression waves
propagates towards region (6) (see figure 4) rather than a family of expansion waves
which exists in regular S-O-S interaction (see figures 3a and 3b).

Similar to the regular S-O-S interaction case, the analytical model of the irregular
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S-O-S interaction should also be validated by comparing its predictions with
experimental results. Unfortunately, however, to the best of the authors’ knowledge,
such experiments do not exist yet. The present analysis can help towards better
understanding of shock wave irregular S-O-S interactions, which are considered more
complicated than shock wave reflections since the former contain two unequal strength
shock waves, and they propagate towards a non-quiescent gas.

As a final remark it should be noted that Kutler et al. (1975) found that their two-
dimensional numerical results agreed well with three-dimensional (cone) experimental
data, especially for the maximum surface pressure which is a major concern of the
S-O-S interaction. Consequently, it is probable that the two-dimensional model
developed here may also be applied to three-dimensional S-O-S interactions for which
it is impossible to develop an analytical model since they contain non-uniform conical
flow regions.

4. Conclusions

The unsteady inviscid two-dimensional flow field and the wave configurations, which
result when a supersonic vehicle strikes a planar oblique shock wave, were modelled
and analytically predicted. Based on the two- and three-shock theories, the geometric
shock dynamics theory and some approximations and simplifying assumptions, both
regular and irregular shock-on-shock (S-O-S) interactions were investigated, and the
transition criterion between them was suggested. In the case of a regular S-O-S
interaction, the transmitted shock wave reflects over the vehicle body surface either as
a regular (RR) or a Mach reflection (MR) depending on the inclination angle and the
strength of the impingement shock wave. A pronounced peak surface pressure jump
was found to exist during the RR%MR transition. A RR%MR transition criterion
for the case of a non-quiescent flow ahead of the shock pattern was proposed.

Compared with their experimental and numerical counterparts, analytical pred-
ictions are relatively easy to model. They result in a physical description of the wave
pattern and the flow field including the peak surface pressure. The results based on the
model developed here agree better than existing approximate theories with both
experimental data and numerical simulations.

Finally, it should be noted that, to the best of the authors’ knowledge, no numerical
simulations have been published following those of Kutler et al. (1975) and Kutler &
Sakell (1976). Consequently, a comparison of the present analytical predictions to
simulations using state-of-the-art numerical codes is not possible at present.
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